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An Analytical Study on Prediction of Effective Elastic Constants
of Perforated Plate
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In this study, the validity of the Eshelby-type model for predicting the effective Young’s
modulus and in-plane Poisson’s ratio of the 2-dimensional perforated plate has been inves-
tigated in terms of the porosity size and its arrangement. The predicted results by the Eshelby-
type model are compared with those by finite element analysis. Whenever the ratio of the
porosity size to the specimen size becomes smaller than 0.07, the effective elastic constants
predicted by finite element analysis are convergent regardless of the arrangement of the
porosities. Under these conditions, the effective Young’s moduli of the perforated plate can be
predicted within the accuracy of 5% by the Eshelby-type model, which overestimates and
underestimates the effective Poisson’s ratios by 10% and 6% for the plates with periodically and
non-periodically arranged porosities, respectively.
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e . Total strain field of the perforated plate
e™ ! Total strain field in the solid

e’ . Total strain field in the porosities
f . Volume fraction of porosities

L . Length of the perforated plate

N . Number of the porosities

S . Eshelby tensor

W Width of the perforated plate
Superscripts

c . The perforated plate

m . Solid

D . Porosities

1. Introduction

Porous solids have been widely used and in-
vestigated for biomedical applications, energy
absorption materials and piezoelectric actuators.
The porous NiTi alloys have the inherent char-
acteristics of biocompatibility, reduced weight,
and superelasticity. (Entchev and Lagoudas, 2004)
The deformation mechanism of the porous alumi-
num alloy has been changed from brittle fracture

Ltd.



An Analytical Study on Prediction of Effective Elastic Constants of Perforated Plate

to ductile deformation, resulting in the increase
of energy absorption capacity.(Ryu et al., 2003)
Porous piezoelectric ceramics such as lead zircon-
ate titanate offer significant improvements over
solid piezoelectric ceramics in many piezoelectric
transducer design figures of merit.(Ting, 1985)

Many researches have been conducted for pre-
dicting mechanical and electromechanical prop-
erties of the porous materials. The material con-
stants of perforated plate have been computed by
applying standard finite element method to an
unit cell, which is the periodically repeated mini-
mum structure of the plate.(Lee, 1995; Chung,
2004) The thermo-mechanical behavior of the
porous shape memory alloy has been estimated
with the unit cell finite element method and an
averaging micromechanics method for periodic
distribution and random distribution of pores in
shape memory alloy, respectively.(Qidwai et al.,
2001) Eshelby-type models have been widely
used for predicting the effective material proper-
ties of elastic and piezoelectric porous materials.
(Tandon and Weng, 1986; Zhao et al., 1989 ;
Dunn and Taya, 1993 ; Lee and Kim, 2005) These
two kinds of method, based on the finite element
method and the Eshelby-type model, have been
extensively used to determine the effective ma-
terial properties of the porous materials. The ap-
plicability of the former is restricted to the po-
rous materials containing periodically distributed
pores. In contrast, it is known that the latter is a
more versatile method than the former, because
it can be applied to the porous materials contain-
ing both periodically and randomly distributed
pores and requires less complicated computation-
al works.

Eshelby-type models have been applied to pre-
dict the effective material properties of the com-
posite due to their relative simplicity. As porous
materials have been highlighted, many researchers
have been greatly interested in Eshelby-type mod-
els to estimate the effective thermo-mechanical
and electro-mechanical behaviors of porous ma-
terials. ( Zhao et al., 1989 ; Dunn and Taya, 1993 ;
Wu, 2000; Qidwai et al., 2001) However, any
research on limitation of this type model has not
been made in terms of pore size and its arrange-
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ment.

In the present study, the effective elastic con-
stants of the perforated plate with the constant
volume fraction of the porosities are derived ex-
plicitly by Eshelby’s equivalent inclusion method
(Eshelby, 1957) combined with Mori-Tanaka’s
mean field theory. (Mori and Tanaka, 1973) These
analytical results are compared with the numeri-
cal results by finite element analysis. The model
plate for the analysis is made of aluminum with
the porosities of cylindrical shape, where the po-
rosities of different sizes are distributed period-
ically and non-periodically. The applicability of
the Eshelby-type model will be in detail discussed
throughout this research in terms of the pore size
and its arrangement.

2. Formulation

The 2-dimensional perforated plate is simu-
lated for the analytical study as shown in Fig. 1,
where the plate is uniformly loaded in x; di-
rection. The original problem is schematically
shown in Fig. 1(a), which is converted into the
Eshelby’s equivalent inclusion problem as shown
in Fig. 1(b). D—£ and £ represent the isotro-
pic solid and porosity domains of the perforated
plate, respectively, which hereafter are denoted as
superscripts m and p, respectively. All subscripts
take on the values 1, 2, 3, and repeated indices are
summed over the same values unless stated other-
wise.

In the absence of any porosity, the correspond-
ing strain field ¢° due to the applied stress ¢°
would be given by ¢f;= Clinief, where

(a) (b)

Fig. 1 An analytical model for computing the ef-
fective material properties of the perforated
plate, (a) original problem, which is con-
verted to (b) Eshelby’s equivalent inclusion
problem
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Cz’kl:Aaij5k1+/l(5ik5jz+5i15kj) <1>

and A, p, C%., and 6;; are Lame’s constants and
the stiffness tensor of the solid, and the Kronecker
delta, respectively. When the plate is subjected to
the uniform stress, the average stress in the solid
and porosity can be determined with the help of
Eshelby’s equivalent inclusion method (Eshelby,
1957) and the Mori-Tanaka mean field theory.
(Mori and Tanaka, 1973) Since the porosity can-
not carry any load, the average stress inside the
porosities is zero and can be expressed as

oh=Chu(efi+enten)
=Clhu(efi+énten—ei) =0

(2)

where C, €, e, e* represent the stiffness, the aver-
age elastic strain in the solid domain, the strain
disturbed by the existence of the inhomogeneity,
and the equivalent eigenstrain of the equivalent
inclusion, respectively. The average stress in the
solid is expressed as

ol =Chu(efit+éewn) (3)

From Egs. (2)-(3) and the requirement that the
integration of disturbed stress over the entire
domain must vanish, &;; is given as

e+ f(e;—ef) =0 (4)

where f is the volume fraction of the porosities.
The disturbed strain e in the porosity is related
through Eshelby’s tensor S as follows :

€i; = Sz‘jkle:l (5>

where S is functions of the Poisson’s ratio of the
solid and the shape of the porosity.

From Egs. (1), (2), (4), and (5), the eigen-
strain e* is explicitly represented as

* 3_2V2 o

euzﬁeu (6a)
1—2)°
O =— l_; ef (6b)

The total strains in the solid and porosity, e™ and
eP, are given by

ei=elité; (7a)

e‘fj:e?j—i-éij—i-eij (7b>

The volume average of the strain induced in the
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perforated plate is computed by using Egs. (4)
and (7), and is expressed as

ei;=efi+fekr (8)
By inserting Eq. (6) into Eq. (8), the strains in x;

and x» directions due to the uniform applied stress
are explicitly derived as

eﬁz[H—%B—Zuz)} O; (9a)
ezczz—[w%(l—zuz)}% (9b)

From Eq. (9), the effective Young’s modulus and
in-plane Poisson’s ratio of the perforated plate
are expressed in explicit form as

Efi= 2 (10)
1—|—L (3—213)
1—f
f 2
. V‘f‘m (1—21/ )
Vi2— f (11>
1+——(3—217)

1—=f
3. Numerical Experiments

The model shown in Fig. 2 is considered to
simulate numerically the effective elastic con-
stants of the 2-dimensional perforated plate using
the commercial finite element software, ANSYS,
where the porosities of different sizes are distri-
buted periodically and non-periodically. The
model is selected to be bigger than the perforated
plate itself to minimize the end effect known by
Saint-Venant’s principle. The porosities included
in the plate are penny-shaped cylinder and mate-
rial properties are summarized in Table 1. The
volume fraction of the porosities is defined as
the ratio of the porosity volume to the specimen
volume and is represented as

Table 1 Material properties of the solid and
porosity for analytical studies

Aluminum | Porosity
Young’s modulus 70 GPa 0
Poisson’s ratio 0.33 0
Aspect ratio - o
Volume fraction of porosities - 0.2
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where N, d, L, W, and ¢ represent the number,
the diameter of the porosities, the length, width,
and thickness of the perforated plate, respectively.
The diameter of the porosity is varied under its
constant volume fraction of 0.2 to investigate the
effect of the porosity size on the effective elastic
constants of the plate. Since the diameter of the
porosity is determined by the number of the po-
rosity, Eq. (12) is reduced to

_ JAfLW
d= TIN (13)

The porosity is periodically distributed as shown
in Fig. 2(a), where the porosity is located at the
center of the unit rectangle. For the non-periodic
distribution of the porosities, random numbers
for a given diameter of the porosity are generated
at least three times by Matlab program, which are
used for the coordinates of centers of the porosi-
ties. Once the porosities are overlapped a little bit,
the last one is excluded.

The displacement of the plate is computed by
ANSYS software. The maximum, minimum, and
average displacements of the plate with periodical
distribution of the porosities are computed, while
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(b) Non-periodically distributed porosities
Fig. 2 Models of the 2-dimensional perforated plate
with porosities of different numbers and dis-
tributions for a finite element analysis

only the average displacement of the plate with
non-periodic distribution of the porosities is com-
puted. The effective elastic constants of the per-
forated plate under the condition shown in Fig. 2
are obtained are computed from the computed
displacement by ANSYS, which are compared
and discussed with those by Eshelby-type model
depicted in chapter 2.

4. Results and Discussions

Figure 3 shows the non-dimensional effective
Young’s modulus (E./E.;) and in-plane Pois-
son’s ratio (Ve/vess) of the perforated plate with
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Fig. 3 Non-dimensionalized numerical results for

effective elastic constants of 2-dimensional
perforated plate with periodically distributed
porosities as a function of porosity size: (a)
effective Young’s modulus, (b) effective Pois-
son’s ratio
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the constant volume fraction of the periodically
distributed porosities as a function of non-di-
mensional porosity size (d/L). The effective prop-
erties computed from the finite element analysis
are non-dimensionalized by those derived from
the Eshelby-type model (ETM) depicted in Chap-
ter 2. The effective Young’s modulus in direction
of the applied stress and Poisson’s ratio in the 1-2
plane are computed and their minimum, maxi-
mum, and average are done, too.

When the porosity is big, the minimum, maxi-
mum, and average values of the effective Young’s
modulus of the plate show considerable differ-
ences between them as shown in Fig. 3(a). At the
largest d/L of 0.5 under the investigation, they
are scattered from 0.8 to 1.15. However, they con-
verge rapidly each other with decreasing the po-
rosity size. As the porosity size becomes smaller
than d/L of 0.07, they show the nearly constant
discrepancies within about 8%. As far as the aver-
age Young’s modulus is concerned, the ETM over-
estimates and underestimates the effective Young’s
moduli of the plates with larger and smaller sizes
of porosities, respectively. For smaller size of po-
rosities less than d/L of 0.07, the ETM predicts
the average effective Young’s modulus within the
accuracy of about 5%. It can be concluded that
the ETM predicts reasonably well the average
effective Young’s modulus of the plate with smal-
ler porosities than d/L of 0.07.

As shown in Fig. 3(b), the effective Poisson’s
ratio of the perforated plate shows the similar
trend to its effective Young’s modulus in Fig. 3
(a). For the plate with smaller porosities than
d/L of 0.07, the effective Poisson’s ratio predicted
by the ETM shows the maximum difference of
22% and differs from the average effective Pois-
son’s ratio by about 10%, compared with the nu-
merical results by FEM.

The average effective Young’s modulus and
Poisson’s ratio of the perforated plate with the
non-periodically distributed porosities are non-
dimensionalized and plotted in Fig. 4. They are
widely scattered at larger d/L, but their disper-
sion has diminished with decreasing the porosity
size. For smaller porosities than d/L of 0.07, the
average Young’s modulus and Poisson’s ratio
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takes almost constant values of 0.96 and 1.06,
respectively. These numerical experiments con-
firm that the ETM can predict reasonably well the
average elastic constants.

The validity of the ETM with respect to the
distribution of the porosities is investigated and
the results are plotted in Fig. 5, where the average
effective elastic constants of the plates with perio-
dically and non-periodically distributed porosi-
ties are compared. The effective Young’s modulus
of the plate with any distribution of the porosities
by FEM analysis increases with decreasing the
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Fig. 4 Non-dimensionalized numerical results for
effective elastic constants of 2-dimensional
perforated plate with non-periodically distri-
buted porosities as a function of porosity size
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Fig. 5 Non-dimensionalized numerical results for
average elastic constants of 2-dimensional
perforated plate as functions of porosity size
and its distribution
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porosity size. The effective Young’s modulus of
the plate with the periodic porosities is larger by
about 10% over the whole range of d/L than that
with the non-periodic porosities. The ETM un-
derestimates and overestimates by the same extent
of at most 5% the effective Young’s moduli of the
plates with periodic and non-periodic porosities
of the smallest size investigated, respectively. For
non-periodically distributed porosities, the po-
rosities are subject to be randomly distributed,
which may induce high stress concentration. The
higher stress concentration increases the area of
large deformation, resulting in smaller Young’s
modulus of the plate. For smaller porosities than
d/L of 0.07, the effective Young’s moduli for both
arrangements converges within about 8% differ-
ence. This indicates that the ETM can predict the
effective Young’s modulus quite accurately re-
gardless of the distribution of the porosity.

As the porosity size decreases, the average
effective Poisson’s ratios of the plates with both
distributions decrease rapidly. For non-periodic
distribution of the porosities being less than d/L
of 0.07, the effective Poisson’s ratio predicted by
ETM shows good agreement with the results by
FEM analysis. Under the same conditions and
non-periodic distribution of the porosities, the
ETM overestimates the effective Poisson’s ratio
by about 10%. It can be concluded that the ETM
can be applied to any distribution of the porosi-
ties and is well suited to the non-periodic distri-
bution of the porosities for predicting the effective
Poission’s ratio.

5. Conclusions

The validity of the Eshelby-type model for
predicting the effective elastic moduli of the 2-
dimensional plate with the constant volume frac-
tion of the porosities has been investigated in
terms of the porosity size and its distribution. For
this purpose, the predicted results by the Eshelby-
type model are compared with those by finite
element analysis. For the porosity size being
smaller than d/L of 0.07 and any distribution of
the porosities, it has been observed that the effec-
tive elastic constants predicted by finite element
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analysis have a rapid convergent trend. Under
these conditions, the average effective Young’s
moduli of the plate can be accurately predicted
with the accuracy of 5% by the Eshelby-type
model. However, it overestimates and underesti-
mates the average effective Poisson’s ratios by
10% and 6% for the plates with periodically and
non-periodically distributed porosities, respec-
tively. As well noted, the Eshelby-type model
has been proved to be more suitable for the plate
with the non-periodically distributed porosities.
It can be concluded through this study that the
Eshelby-type model can predict relatively well
the average effective elastic constants of the plate
with both periodic and non-periodic distribu-
tions of the porosities and the smaller porosity
size than d/L of 0.07.
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